

IMPACTS OF ICELANDIC DUST ON THE ENVIRONMENTAL SYSTEMS

PAVLA DAGSSON-WALDHAUSEROVA

O. ARNALDS, H. OLAFSSON, O. MEINANDER, M. GRITSEVICH, J. PELTONIEMI, J-B RENARD, J. HLADIL, L. CHADIMOVA, J. KAVAN, B. MORONI, D. DJORDJEVIC, D. URUPINA, A. SANCHES-MARROQUIN, B. MURRAY, J. BROWSE, C. BALDO, Z. SHI, AND MORE

THE 5TH HIGH LATITUDE DUST WORKSHOP

10-11 FEB 2021 I REYKJAVÍK I ICELAND

TALK OUTLINE

- UPDATE ON THE HIGH LATITUDE DUST SOURCES
- UPDATE ON DUST OBSERVATIONS IN ICELAND IN 2020
- IMPACTS OF DUST ON ATMOSPHERE, CRYSOPHERE AND OTHER SYSTEMS
- UPDATE ON THE ICELANDIC AEROSOL AND DUST ASSOCIATION (ICEDUST)

TALK OUTLINE

- UPDATE ON THE HIGH LATITUDE DUST SOURCES
- UPDATE ON DUST OBSERVATIONS IN ICELAND IN 2020
- IMPACTS OF DUST ON ATMOSPHERE, CRYSOPHERE AND OTHER SYSTEMS
- UPDATE ON THE ICELANDIC AEROSOL AND DUST ASSOCIATION (ICEDUST)

HIGH LATITUDE DUST AREAS

New paper/map in preparation by Meinander et al. on Merging > 20 new HLD sources

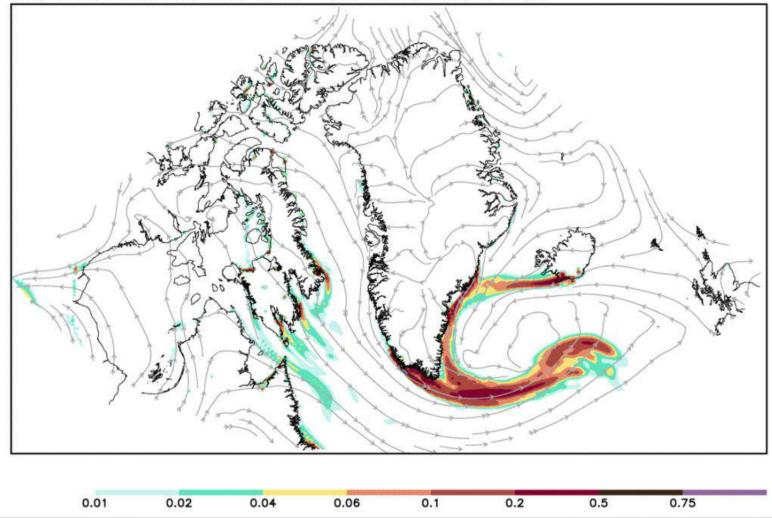
Longyearbyen

Nuussuaq Peninsula, October 2020

lttoqqortoomiit, Septem<u>ber 2018</u>

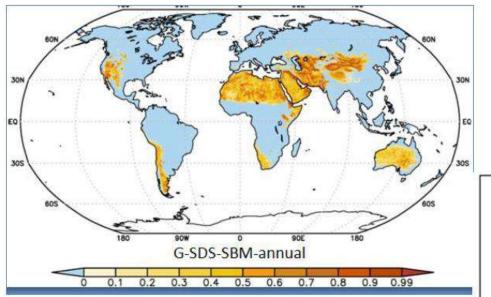
RUSSIA DISPATCH

In Russian Village Swallowed by Sand, Life's a Beach. Just Not in a Good Way.


Ehe Nem 4

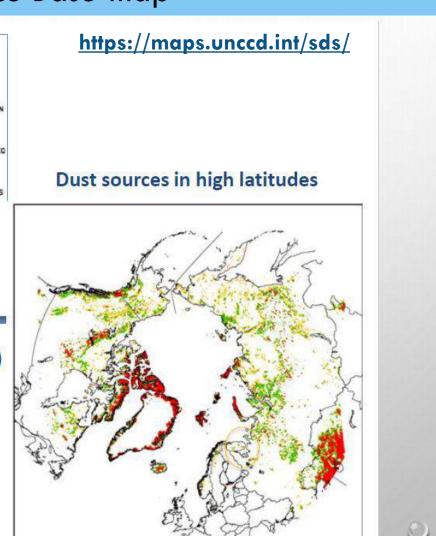
Shoyna, a fishing village in the frigid far north, is slowly vanishing under dunes that engulf entire houses. For children, home is now a giant sandbox. Adults have to "say goodbye to my high heels."

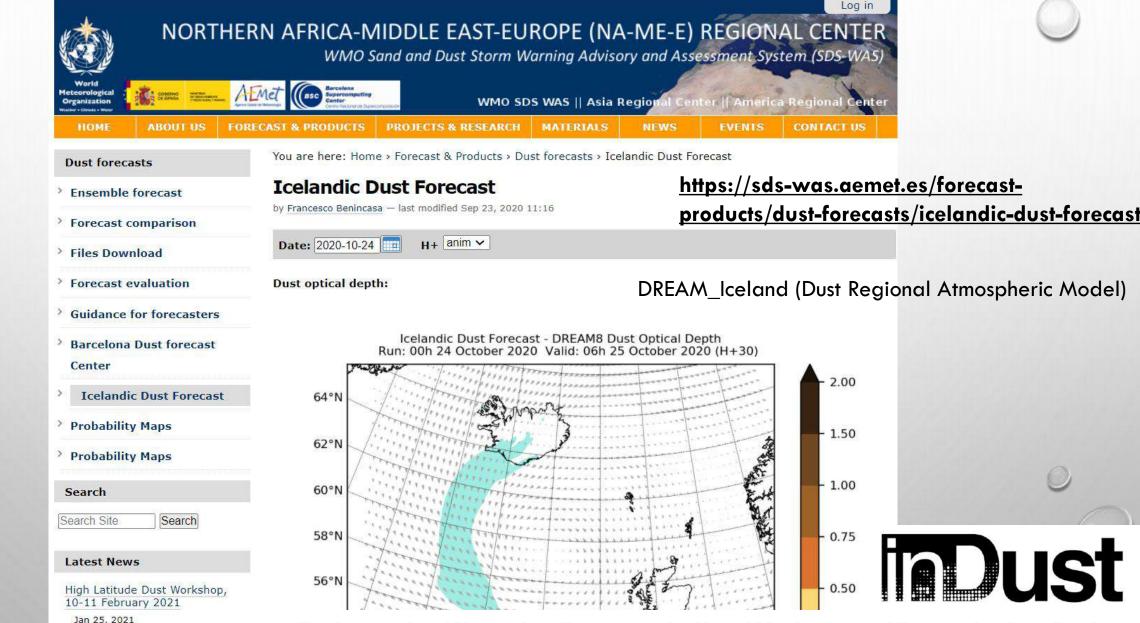
HIGH LATITUDE DUST AREAS


Nickovic, Cvetkovic et al. Circumpolar DREAM model for the HLD sources

NMMB-DREAM-cirkumpolar: Dust load (g/m²) and 10m wind Forecast base time: 04N0V2013 00UTC Valid time: 04N0V2013 21UTC

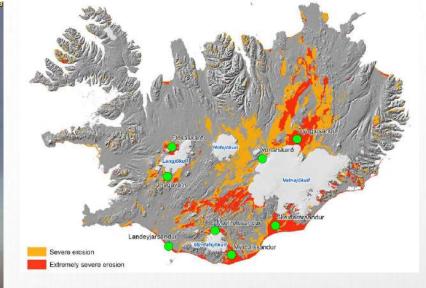
HIGH LATITUDE DUST AREAS


Vukovic, 2019. Sand and Dust Storms Source Base-map


UNCCD 1km global dust mask (Ana Vukovic, 2019)

United Nations Convention to Combat Desertification

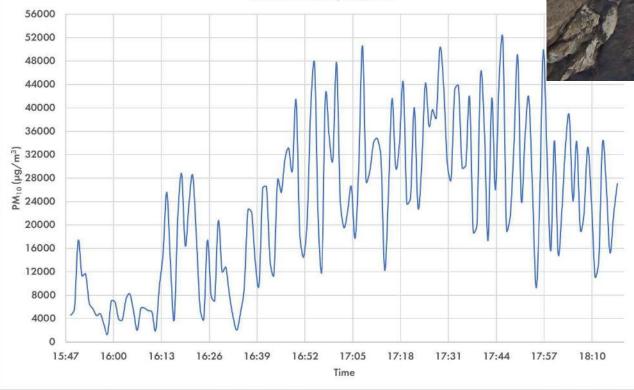
OPERATIONAL FORECAST FOR ICELANDIC DUST ON THE WMO SDS-WAS

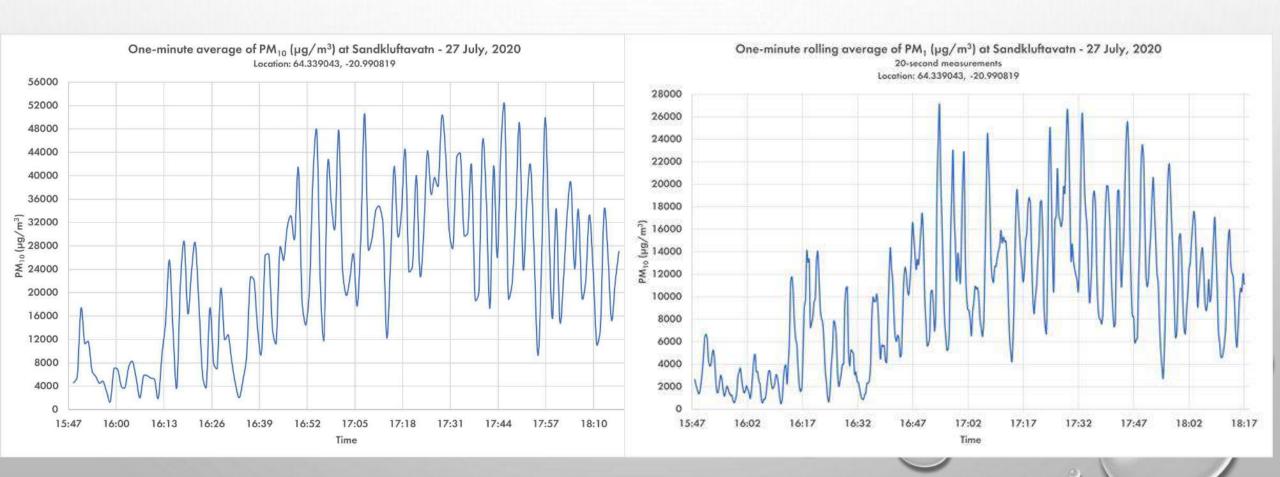

The International Network to Encourage the Use of Monitoring and Forecasting Dust Products

TALK OUTLINE

- UPDATE ON THE HIGH LATITUDE DUST SOURCES
- UPDATE ON DUST OBSERVATIONS IN ICELAND IN 2020
- IMPACTS OF DUST ON ATMOSPHERE, CRYSOPHERE AND OTHER SYSTEMS
- UPDATE ON THE ICELANDIC AEROSOL AND DUST ASSOCIATION (ICEDUST)

AGRICULTURAL UNIVERSITY OF ICELAND CAMERA MONITORING SYSTEM – 4 MOST ACTIVE DESERTS

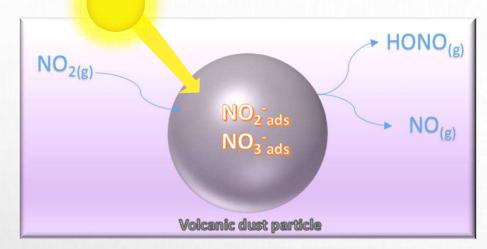

abnetet itesterivebenuebne.


One-minute average of PM₁₀ (µg/m³) at Sandkluttavatn - 27 July, 2020 Location: 64.339043, -20.990819

Field measurements in three Icelandic deserts 2020

Extremely severe e

PM₁₀ VS. PM₁ MEASUREMENTS INSIDE THE DUST STORM



TALK OUTLINE

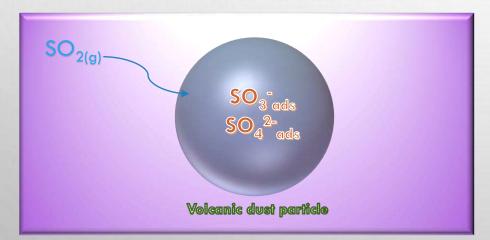
- UPDATE ON THE HIGH LATITUDE DUST SOURCES
- UPDATE ON DUST OBSERVATIONS IN ICELAND IN 2020
- IMPACTS OF DUST ON ATMOSPHERE, CRYSOPHERE AND OTHER SYSTEMS
- UPDATE ON THE ICELANDIC AEROSOL AND DUST ASSOCIATION (ICEDUST)

Volcanic dust impacts on atmospheric chemistry

Dust particles scavenge efficiently NO_2 acting as transported media of surface nitrites and nitrates.

Dust particles convert NO_2 to HONO (nitrous acid), a very important precursor of OH radicals (HONO is photolysed during day time

producing OH and NO)



Journal of Environmental Sciences Volume 95, September 2020, Pages 155-164

Reactive uptake of NO₂ on volcanic particles: A possible source of HONO in the atmosphere

Manolis N. Romanias ¹,8, Ø, Yangang Ren ², Benoit Grosselin ², Véronique Daële ², Abdelwahid Mellouki ², Pavla Dagsson-Waldhauserova ^{3, 4}, Frederic Thevenet ¹

 SO_2 is scavenged very efficiently on dust particles to form sulfites and sulfates. Therefore, the acidity of the particles can change as well as the hygroscopic and optical properties.

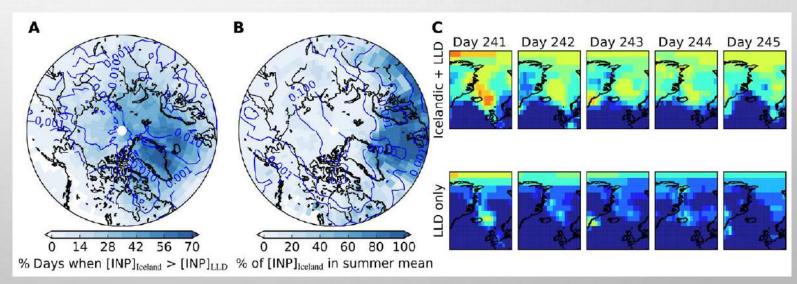
Contents lists available at ScienceDirect

Atmospheric Environment

journal homepage: www.elsevier.com/locate/atmosenv

Uptake and surface chemistry of SO₂ on natural volcanic dusts D. Urupina^{a,*}, J. Lasne^a, M.N. Romanias^a, V. Thiery^b, P. Dagsson-Waldhauserova^{c,d}, F. Thevenet^a

ICELANDIC DUST MAKES ICE IN CLOUDS


- Icelandic volcanic dust is an active Ice-Nucleating Particle (INP) similarly to Low Latitude Dust (LLD)
- Airborne Icelandic dust sampled from the aircraft is more active INP than LLD at temperatures above $-17^{\circ}C$
- The greatest contribution of Icelandic dust to the INP population occurs during the summer over large areas of the North Atlantic and the Arctic at altitudes between 3-5.5 km, where mixed-phased clouds are known to occur.
- In future, increased INP concentrations would lead to a reduction in supercooled water and a decrease in shortwave reflectivity of clouds to produce a positive climate feedback, which has not yet been considered in climate simulations

SCIENCE ADVANCES | RESEARCH ARTICLE

ATMOSPHERIC SCIENCE

Iceland is an episodic source of atmospheric ice-nucleating particles relevant for mixed-phase clouds

A. Sanchez-Marroquin¹*, O. Arnalds², K. J. Baustian-Dorsi^{1,3}, J. Browse^{1,4}, P. Dagsson-Waldhauserova^{2,5}, A. D. Harrison¹, E. C. Maters^{1,6}, K. J. Pringle¹, J. Vergara-Temprado⁷, I. T. Burke¹, J. B. McQuaid¹, K. S. Carslaw¹, B. J. Murray¹

DUST IMPACTS ON CRYOSPHERE IMPURITIES ON SNOW

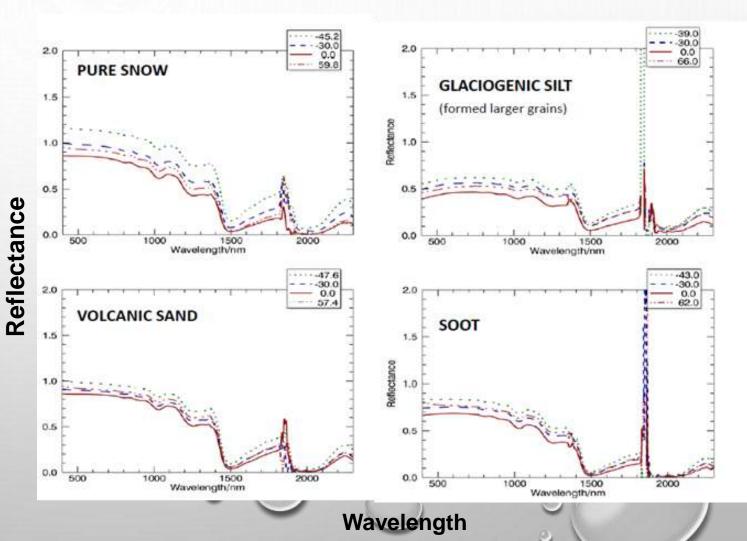
Br

Tille

Dust

SPECTRAL REFLECTANCE AT THE TIME OF THE DEPOSITION

The Cryosphere, 9, 2323–2337, 2015 www.tlc-cryosphere.net/9/2323/2015/ doi:10.51941e.9-2323-2015 & Author(s) 2015 CC Attribution 3.0 License © 0


Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow

J. L. Peltoniemi¹², M. Gritsevich^{12,3}, T. Hakala¹, P. Dagsson-Waldhauserovä^{5,6,7}, Ö. Arnalds⁶, K. Anttila^{1,3}, H.-R. Hannula¹, N. Kivekäs³, H. Lihavainen³, O. Meinander⁵, J. Svensson^{3,9}, A. Virkkula³, and G. de Leeuw^{2,3}

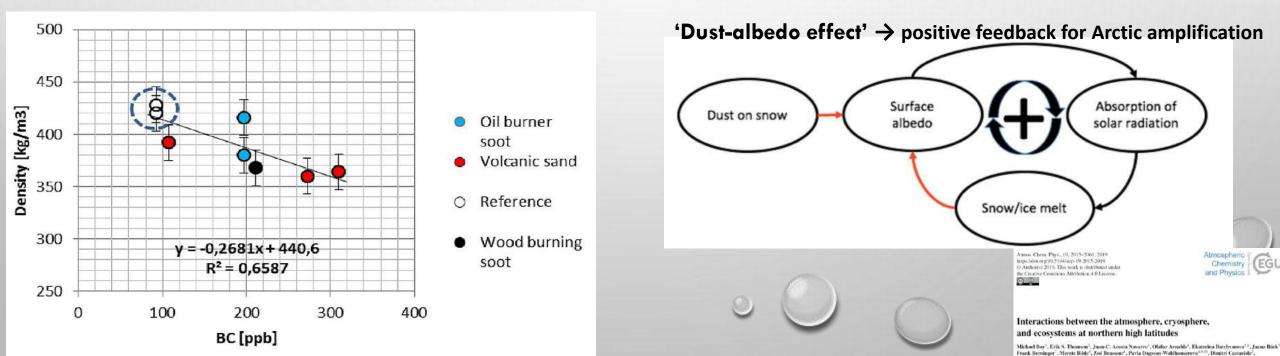
(E

The Cryosphere 2

Albedo - 1 white fresh snow, 0 black body

The Cryosphere, 9, 2323–2337, 2015 www.the-cryosphere.net/9/2323/2015/ doi:10.5194/ic.9-2323.2015 % Author(s) 2015. CC Attribution 3.0 License

Soot On Snow (SOS) 2013


The Cryosphere, 8, 991–995, 2014 www.the.cryosphere.net/8/991/2014/ doi:10.5194/tc-8-991-2014 © Authory) 2014. CC Attribution 3.01.iccras.

Brief communication: Light-absorbing impurities can reduce the density of melting snow

O. Meinander¹, A. Kontu², A. Virkkula⁷, A. Arola⁵, L. Backman³, P. Dagson-Waldhauserova^{6,5}, O. Jätvinen⁶, T. Manninen¹, J. Svensson¹, G. de Leeuw^{1,6}, and M. Leppäranta⁶

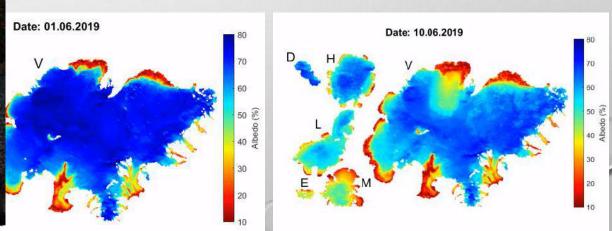
- VOLCANIC DUST DECREASES SNOW ALBEDO SIMILARLY AS BLACK CARBON
- SOOT DECREASES WATER RETENTION CAPACITY AND DENSITY OF SNOW

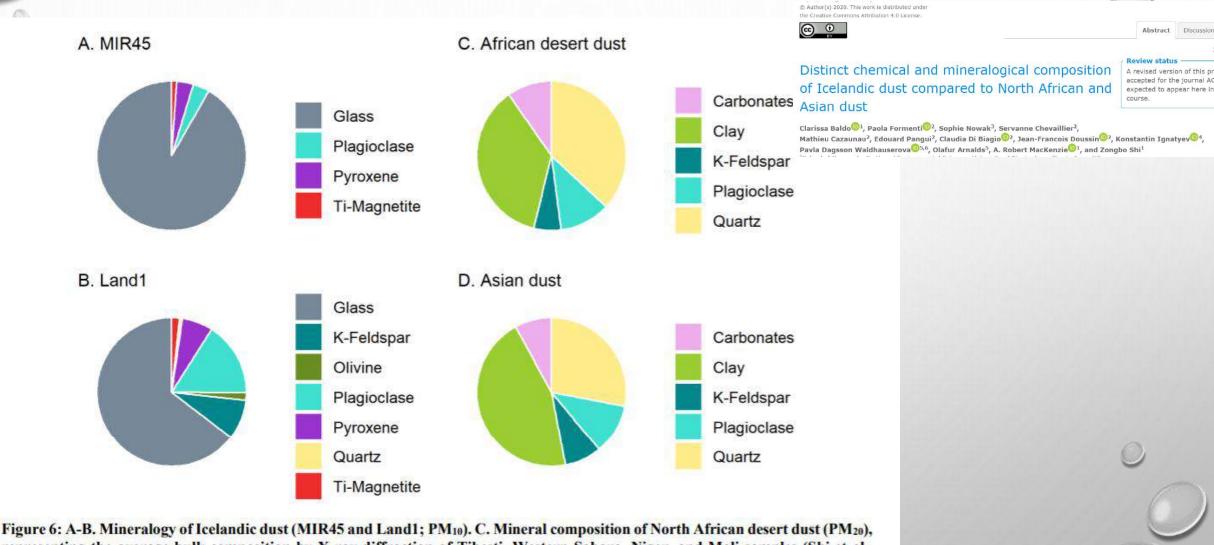
Soot on Snow experiment: bidirectional reflectance factor measurements of contaminated snow

J. L. Peltoniemi¹², M. Gritsevich^{12,3}, T. Hakala¹, P. Dagson-Waldhauserova^{5,6,7}, Ö. Arnalds⁶, K. Anttila^{1,3}, H.-R. Hannula⁴, N. Kivekäs⁵, H. Lihavainen³, O. Meinander⁵, J. Svensson^{5,8}, A. Virlskula³, and G. de Leeuw^{2,3} The Cryosphere, 11, 741–754, 2017 www.the-cryosphere.net/11/741/2017/ doi:10.5194/tc-11-741-2017 © Author(s) 2017. CC Attribution 3.0 License.

Impact of dust deposition on the albedo of Vatnajökull ice cap, Iceland

Monika Wittmann¹, Christine Dorothea Groot Zwaaftink², Louise Steffensen Schmidt¹, Sverrir Guðmundsson^{1,3}, Finnur Pálsson¹, Olafur Arnalds⁴, Helgi Björnsson¹, Throstur Thorsteinsson¹, and Andreas Stohl²


The Cryosphere


f Iceland on (a) 20 May 2012 (day 141) and (b) 28 May 2012 (day 149). Notice the brownish hues (orange circle) ern Vatnajökull) after the dust event, which indicate that dust was deposited on the glacier. Image courtesy of stem at NASA/GSFC. http://rapidfire.sci.gsfc.nasa.gov/

edo reduction due dust storms in June 2019

Courtesy of Andri Gunnarsson, IceDust, Landsvirkjun.

Icelandic dust has differenet composition that crustal dust

representing the average bulk composition by X-ray diffraction of Tibesti, Western Sahara, Niger, and Mali samples (Shi et al., 2011b). D. Mineral composition of Asian dust (PM₁₀), average bulk composition by X-ray diffraction of dust from arid regions in Mongolia and North China collected in Seoul (Korea) during eight dust events in 2003-2005 (Jeong et al., 2008).

Iron content and solubility of Icelandic dust

- high total Fe content (10-13 wt%)
- Fe chemical form:

of Icelandic dust compared to North African and Asian dust Clarissa Baldo^{®1}, Paola Formenti^{®2}, Sophie Nowak³, Servanne Chevaillier²,

Distinct chemical and mineralogical composition

 Author(s) 2020. This work is distributed under the Creative Commons Attribution 4.0 License.

> Review status A revised version of this pr accepted for the journal AC expected to appear here in course.

Abstract Discussion

Clarissa Baldo^{®1}, Paola Formenti^{®2}, Sophie Nowak³, Servanne Chevaillier², Mathieu Cazaunau², Edouard Pangui², Claudia Di Biagio^{®2}, Jean-Francois Doussin^{®2}, Konstantin Ignatyev^{®4}, Pavla Dagsson Waldhauserova^{®5,6}, Olafur Arnalds⁵, A. Robert MacKenzie^{®1}, and Zongbo Shi¹

- dithionite Fe (Fe oxides such as hematite and goethite) 1-6%
- ascorbate Fe (amorphous Fe) contribute respectively 0.3-1.4% of the total Fe
- magnetite 7-15% of total Fe and 1-2 wt% of PM10 (in orders of magnitude higher than in North Africa)
- pyroxene and amorphous glass 80-90%
- the initial Fe solubility: 0.08-0.6%
- the Fe solubility at low pH (i.e., 2): significantly higher (up to 30%) than typical low latitude dust
- differences btw LLD and HLD:
 - low degree of chemical weathering
 - the basaltic composition of the parent sediments
 - glacial processes
- dust can impact primary productivity and nitrogen fixation in the N Atlantic Ocean
- lead to additional carbon uptake
- the ratios of nutrients in the atm. deposition can favour the growth of particular types of phytoplankton, leading to changes in community structure and thus biodiversity

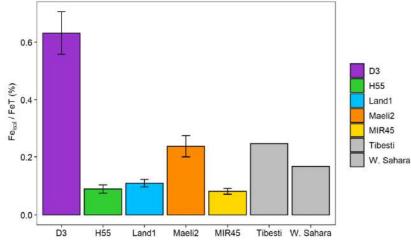
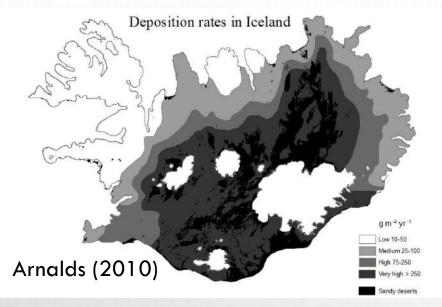
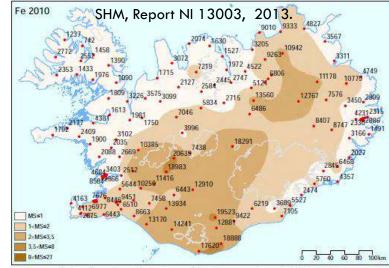
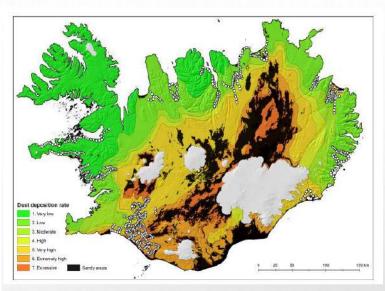
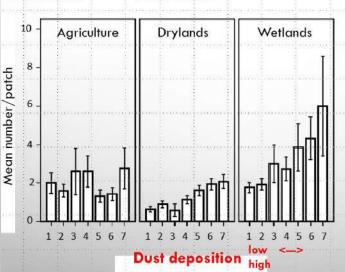




Figure 4: Initial Fe solubility (Fe_{bol} / FeT, %) of Icelandic dust (this study). The data uncertainty was estimated using th propagation formula. Data for African dust samples (Tibesti and W. Sahara) were from Shi et al. (2011c).


Direct impacts of dust on ecosystems


18. mynd. Styrkur (mg/kg) járns (Fe) í mosa árin 1990, 2000 og 2010.

Fe concentrations in mosses

Unique bird and volcanic dust datasets indicate fertility associated with basaltic volcanic ash

VOLCANIC DUST (ASH) AND BIRD ABUNDANCE

Ecology and Evolution


Open Access

Ecosystem recharge by volcanic dust drives broad-scale variation in bird abundance

Tómas Grétar Gunnarsson¹, Ólafur Arnalds², Graham Appleton³, Verónica Méndez¹ & Jennifer A. Gill⁴

DUST DESTROYS HUMAN SETTLEMENTS 1801-1850

Direct impacts on land degradation, human settlement

M. Hejcman, L. Smejda, V. Pavlu, Sofus

Table 1. Studied farms with the oldest reference, period of habitation and code used in graphs.

Name of site	Oldest reference	In habitation	Name of site	1711	1841	1850	1860	1870	1880	1890	1901	1910
Kot	1687	1687-1981	Kot	0	4	5	4	3	3	5	2	4
Kastalabrekka	1711	900-1650	Kastalabrekka									
Steinkross (old site)	From 1270	1200-1849	Steinkross (old site)	211	231							
Steinkross (new site)	From 1849	1849-1882	Steinkross (new site)	0		236	327	421	600			
Dagverðarnes	From 16th century	1500-1912	Dagverðarnes	0	191	279	350	420	750	400	387	450
Brekkur	1398	1350-1876	Brekkur		130	211	265	310				
Valshóll	1849 (outhouse for sheep from Gunnarsholt)	(in use) 1350-1926	Valshóll									

Table 2. Number of sheep at each farm

Differences in nutrients were found in *plant species*, *nutrient in herbage and soil* between farm ruins and outside farms (control)

Plant species: <u>Farms</u>: Alopecurus pratensis, Equisetum pratense, E. arvense, Rumex acetosa, Elytrigia repens, and Poa pratensis. <u>Outside</u>: Festuca vivipara, Luzula multiflora, Carex bigelowii, Potentilla crantzii, and Galium boreale. **Nutrient concentrations in herbage**: <u>Farms</u>: High contents of P, K, Ca, and Mg. <u>Outside</u>: High contents of Fe, Mn, Zn, and Cu.

Nutrient concentrations in soil: <u>Farms</u>: High contents of P, K, Ca, Mg, Zn, Cu, Fe, Mn, and total N. <u>Outside:</u> Lower contents of all nutrients and higher pH than on farms.

CONCLUSION

- IMPACTS OF DUST ON ATMOSPHERE AIR QUALITY, AIR CHEMISTRY, CLOUDS
- IMPACTS OF DUST ON CRYSOPHERE ALBEDO, WATER RETENTION, NUTRIENTS
- IMPACTS OF DUST ON OTHER SYSTEMS MOSS, BIRDS, MARINE ECOSYSTEMS
- HUMAN SAFETY AND SETTLEMENTS

TALK OUTLINE

- UPDATE ON THE HIGH LATITUDE DUST SOURCES
- UPDATE ON DUST OBSERVATIONS IN ICELAND IN 2020
- IMPACTS OF DUST ON ATMOSPHERE, CRYSOPHERE AND OTHER SYSTEMS
- UPDATE ON THE ICELANDIC AEROSOL AND DUST ASSOCIATION (ICEDUST)

Convener: Pavla Dagsson Waldhauserova ECS Q | Co-conveners: Biagio Di Mauro Q, Marie Dumont Q, Outi Meinander ECS Q